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Using a generalized Madelung transformation, we derive the hydro-
dynamic representation of the Dirac equation in arbitrary curved
space-times coupled to an electromagnetic field. We obtain Dirac-
Euler equations for fermions involving a continuity equation and a
first integral of the Bernoulli equation. Using the comparison of the
Dirac and Klein-Gordon equations we obtain the balance equation for
fermion particles. We also use the correspondence between fermions
and bosons to derive the hydrodynamic representation of the Weyl
equation which is a chiral form of the Dirac equation.
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1. Introduction

The Standard Model of elementary particles establishes that
there exist two kinds of particles, fermions and bosons. In
previous works [1, 2], the energy balance for bosons was de-
rived starting from the general relativistic Klein-Gordon (KG)
equation. In the present work, we study a system of fermions
described by the Dirac equation in arbitrary curved space-
times taking into account electromagnetic effects. We also use
the Weyl equation which is a chiral form of the Dirac equa-
tion due to the relationship between the Lie algebras of the
symmetry groups for both systems of particles. We give the
hydrodynamic representation of the Dirac and Weyl equations
for fermions using previous results obtained for boson parti-
cles. This representation is built analogously as in quantum
mechanics (QM) and as in the bosonic case [1], where it was
introduced by the Madelung transformation in order to find an
alternative interpretation of a boson system. This interpreta-
tion has been very useful in astrophysics [2]. In this article, we
extend the previous transformation to the fermionic case, in
the same way we pretend to give an alternative interpretation
of the femionic systems.
Many examples of fermion particles in strong gravitational
fields can be found in nature. Indeed, the curvature of space-
time plays an important role in a neutron star, in the early
Universe, or in a fermion cloud (e.g. a dark matter halo) in the
vicinity of a black hole. We need to develop a general frame-
work to identify what are the different energy contributions
in such systems. In this work we use the geometrical decom-
position of the metric in 3+1 slices and the tetrad formalism
to study the particle spin in an arbitrary space-time. We
define the gamma matrices in curved space-times and derive
the generalized Dirac and Weyl equations. Then, using the
Madelung transformation, we introduce a hydrodynamic rep-
resentation of the Dirac and Weyl spinors. This hydrodynamic
representation can help us to describe the fermionic system in
a general framework. We can highlight that this description is
convenient because it is easier to make a physical interpreta-
tion, since the hydrodynamic representation is given in some
variable such as number of particles, speed, potential or energy.

In fact, a non-obvious result is the energy balance equation,
which is the first law of thermodynamics, which comes from the
Dirac equation with the Madelung transformation for spinors.
Although the equations obtained from this representation are
more complicated than in the usual way, it can help us to
have a closer answer for interpretations of quantum theory, for
example, the de Broglie-Bohm interpretation[3–5]. In addition,
we can compare the hydrodynamics and energy balance in
different frames for classical and quantum particles, as well as
spin and spinless particles, such as bosons and fermions.

2. Field Equations

A. Dirac representation. We start using the tetrad formalism
for the space-time geometry, and the canonical expansion of
the space-time in a 3+1 ADM decomposition [6–11], such that
the coordinate t is the parameter of evolution. The 3+1 metric
reads

ds2 = N2c2dt2 − hij

(
dxi +N ic dt

) (
dxj +N jcdt

)
, [1]

where N represents the lapse function which measures the
proper time of the observers traveling along the world line, N i

is the shift vector and hij is the 3-dimensional slice-metric. We
write eq.(1) in the tetrad formalism as ds2 = ηabe

a
µe

b
νdx

µdxν ,
where ηab = diag(1,−1,−1,−1). Here ea = ea

µdx
µ is the set

of one-forms base of the cotangent space at the space-time
manifold given by

e0 = Ncdt,
ek = êk

i

(
dxi +N icdt

)
, [2]

with inverse given by êk = êk
idxi the one-form base to the

three-dimensional slice of the cotangent manifold, such that
hij = δklê

k
iê

l
j . We can also define the set of vectors base

of the tangent-space to the space-time as ea = e µ
a ∂µ, such

that eaeb = δa
b. The action of a fermion system in curved

space-times coupled to an electromagnetic field Aµ is given
by S [ψ(xµ), ∂µψ(xµ)] =

∫
L (ψ(xµ), ∂µψ(xµ)) d4x, where L =

L (ψ(xµ), ∂µψ(xµ)) is the Lagrangian density [12–14]:

L =
√
−g iℏc2

[
ψ†Bγµ (Dµψ)− (Dµψ)† Bγµψ + 2imc

ℏ
ψ†Bψ

]
.

[3]

Here, Dµ = ∇µ + iq

ℏc
Aµ is the total covariant derivative ac-

counting for electromagnetic effects. The covariant derivative
of a spinor ψ = (ψν̇) is given by ∇µ(ψν̇) = ∂µ(ψν̇) + Γα̇

µν̇(ψα̇),
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where Γα̇
µν̇ is the spin connection[6, 15]. Observe the internal

indices as dot indices. Using the least action principle it is pos-
sible to obtain from eq.(3) the corresponding Dirac equation.
This equation is given by

[iℏγµ(∇µ + iqAµ )−mc]ψ = 0, [4]

where ℏ, c are the Planck constant and the speed of light
respectively, while q,m are the charge and mass of the fermion
particle and ψ is its spinor. Besides, the gamma matrices γµ

are related to the spin and space-time geometry. They can be
written as γµ = eµ

aγ̃
a, where γ̃a are the gamma matrices in

flat space-time, which are well-know from standard Quantum
Field Theory (QFT) [16–18] Henceforth, we use the natural
units. Therefore,

γ0 = Nγ̃0,

γk = êk
j(γ̃j +N j γ̃0). [5]

In general, these matrices fulfill the following anti-commutation
relation[6, 19]

{γµ, γν} = γµγν + γνγµ = 2gµνI, [6]

where gµν represents the metric that describes the space-time
geometry. On the other hand, we observe that, in general, the
gamma matrices obey the following relation[12–14, 20]

(γµ)† = BγµB−1, [7]

where B is a hermitian matrix, i.e. B† = B, that is uniquely
determined by the gamma matrices γµ. As usual, we denote
by B† the conjugate (or Hermitian) transpose of B.
Furthermore, we note that in QFT the relation (7) is fulfilled
when B = γ̃0 and the gamma matrices are in flat space-time.
From the action (3) of the fermion system we can find the
equation for the transpose conjugated spinor by making an
infinitesimal variation of this action with respect to ψ that is
given by

i
(
∇µψ̄

)
γµ−iψ†∇µ (Bγµ)+iψ̄∇µγ

µ +ψ̄Aµγ
µ +mψ̄ = 0. [8]

We denote the adjoint spinor as ψ̄ = ψ†B. Using the gamma
matrices in flat space-time and the fact that B = γ̃0, we recover
the definition of ψ̄ in QFT. However, in an arbitrary space-
time ∇µγ

µ is distinct from zero, since γµ = eµ
aγ̃

a. Therefore,
in general ∇µe

µ
a is non-zero. We can get the conserved charge

from the Noether theorem [21]. The Dirac current is

Jµ = ψ̄γµψ = ψ†Bγµψ. [9]

To obtain the continuity equation

∇µJ
µ = 0. [10]

we get
∇µJ

µ = ψ†∇µ (Bγµ)ψ. [11]

If we require that the continuity equation (10) is fulfilled,
i.e., that the number of particles is conserved, then we need
∇µ (Bγµ) = 0, or equivalently

(∇µB)γµ = −B∇µγ
µ. [12]

In references [13, 14], the authors conclude that the condition
(12) is the most convenient because it is implied by ∇µγ

ν = 0
and ∇µB = 0.

Since, the spinor field used is coupled to an electromagnetic
field, we show the equations that describe the electromagnetic
field. Thus, with the Maxwell four-potential we can define the
Faraday tensor

Fµν = ∇µAν −∇νAµ. [13]

In the electromagnetic theory, the Faraday tensor Fµν satisfies
the Maxwell field equations

∇νF
νµ = JEµ, [14]

where JEµ is the four-electromagnetic current.

B. Weyl representation. The Dirac equation for 1/2-spin par-
ticles is associated with the SO(1, 3) symmetry group. Never-
theless, we can introduce a new representation as in standard
QFT, since there exists a surjective homomorphism between
the SO(1, 3) and SU(2)⊗ SU(2) Lie groups.
In terms of the Pauli matrices σµ the 4× 4 gamma matrices
γµ can be written as two 2× 2 block matrices

γ0 = Nγ̃0 = N

(
0 I
I 0

)
, [15]

γj =
(

0 −êj
i(σ̃

i −N iI)
êj

i(σ̃
i +N iI) 0

)
, [16]

where σ̃i are the 2× 2 Pauli matrices in flat space-time

σ̃1 =
(

0 1
1 0

)
, σ̃2 =

(
0 −i
i 0

)
, σ̃3 =

(
1 0
0 −1

)
, [17]

and I is the 2 × 2 identity matrix. The γµ matrices satisfy(
γ0)† = γ0 and

(
γj

)† = −γj + 2N jγ0/N . At this point, we
need to adopt the standard representation for the gamma
matrices in a flat space-time γ̃µ as follows

γ̃0 =
(

0 I
I 0

)
, γ̃j =

(
0 −σ̃j

σ̃j 0

)
. [18]

This representation helps us to build the Weyl representation.
Additionally, in the Weyl representation we can write a Dirac
fermion as a four-spinor ψ made of two spinors, each of which
having two components, for instance

ψ =
(

ψR

ψL

)
, [19]

where ψR and ψL are the right- and the left- handed Weyl
spinors, respectively. If we write the adjoint spinor ψ̄ and use
the Weyl representation, it follows that

ψ̄ = ψ†B =
(
ψ†

R, ψ
†
L

)
B, [20]

where B is the matrix from eqs. (7) and (12). If we use the
relation (7) it is straightforward to see that the matrix B must
have the following form

B =
(

0 Bζ

Bζ 0

)
, [21]

where the 2× 2 matrix Bζ is a diagonal matrix, Bζ = bI, with
b = b(xµ). Adopt a specific representation for the symmetry
group, which is done without loss of generality. Hence, using
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the definition of the spinor and its adjoint we can write the
Dirac quadricurrent Jµ from eq. (9). This yields

J0 = Nb(ψ†
RψR + ψ†

LψL), [22]
Jj = bêj

i(ψ
†
R(σ̃i +N iI)ψR − ψ†

L(σ̃i −N iI)ψL). [23]

In order to simplify the notation, we now define the vectors
of 2× 2 matrices Sa = (I, σ̃j +N jI) and S̄a = (−I, σ̃j −N jI)
in terms of the Pauli matrices. Sa and S̄a are the (general-
ized) Pauli matrices in flat space-time. In terms of these new
definitions, the density currents read

Jµ = bêµ
i(ψ

†
RSiψR − ψ†

LS̄
iψL)

= b(ψ†
Rσ

µψR − ψ†
Lσ̄

µψL), [24]

where we have defined the 2 × 2 Pauli matrices in a curved
space-time by σµ = eµ

aSa and σ̄µ = eµ
aS̄a. With this definition,

the matrices γj read

γj =
(

0 −σ̄j

σj 0

)
. [25]

Furthermore, observe that the σj matrices follow the same
commutation relations as the flat space-time Pauli matrices.
This means that [σi, σ̄j ] = −êi

kê
j
l [σ̃k, σ̃l]. We can now apply

the Weyl representation to rewrite the Dirac equation (4) for
a spinor with four components as(

iσµ
(
∇̄µ + iqAµ

)
ψR −mψL

iσ̄µ (∇µ + iqAµ)ψL −mψR

)
=

(
0
0

)
. [26]

These are the Weyl equations for a spinor in a curved space-
time coupled to an electromagnetic field. If we set B = bγ̃0,
the current density now reads

Jµ = b
(
ψ†

Rσ
µψR − ψ†

Lσ̄
µψL

)
. [27]

Explicitly, we have for the spatial part

Jj = bêj
i

(
ψ†

Rσ̃
iψR − ψ†

Lσ̃
iψL + N i

Nb2 J
0
)
. [28]

On the other hand, we can be obtained from the identities

γµγνFµνψ =
{

(2NNkF0k + iF̂ijϵ
ij

kσ̃
k)ψR

−(2NNkF0k − iF̂ijϵ
ij

kσ̃
k)ψL

, [29]

and using definition (25), we find that

γµ(∇µγ
ν)(Dνψ) =

{
−S̄aSb(∇̂aê

ν
b )(DνψR)

−SaS̄b(∇̂aê
ν
b )(DνψL)

[30]

where ϵij
k is the usual Levi-Civita tensor, F̂ij = êl

iê
m
j Flm is the

directional Maxwell tensor F̂ij = (êl
i∇̂j − êl

j∇̂i)Al, and ∇̂a =
êα

a∇α is the directional covariant derivative which defines the
Cartan connection ∇̂cê

ν
b = Γa

bcê
ν
a. The Cartan connection

Γa
bc = êa

ν∇̂cê
ν
b determines the Cartan first fundamental form

dêa +Γa
b ∧ êb for the connections Γa

b = Γa
bdê

d with the property
that Γab + Γba = 0, where Γab = ηadΓd

b .

3. Weyl Hydrodynamic Representation

We now have all the ingredients to propose a hydrodynamic
representation for the Weyl fermions, following the same pro-
cedure as the one developed for the Schrödinger and KG
equations in Refs.[1, 2]. We start to propose our Madelung
transformation in the Weyl spinor, using the exponential map,
that is

Ψ =
(

ψR

ψL

)
=

(
RR

RL

)
eiθ. [31]

Since ψR and ψL are two spinors, we observe that RR and RL

are two two-dimensional vectors. The Weyl representation of
the adjoint spinor Ψ̄ when B = bγ̃0 is

Ψ̄ = b
(
ψ†

R, ψ
†
L

)
γ̃0 =

(
R†

R, R
†
L

)
e−iθ. [32]

We use RL and RR as complex two-spinors and θ as a complex
function. Therefore, using the Madelung transformation (31)
in the Weyl equations (26) and applying the Lie algebra and
the Lie group, we can get the following expression(
−σµ

(
∇̄µθ

)
RR + iσµ

(
∇̄µRR

)
− qσµAµRR

−σ̄µ (∇µθ)RL + iσ̄µ (∇µRL)− qσ̄µAµRL

)
=

(
mRL

mRR

)
.

[33]
These are the Weyl equations in curved space-time with the
Madelung transformation. We can also apply the Madelung
transformation (31) and (32) to the current density (27),
thereby obtaining

Jµ = b
(
R†

Rσ̄
µRR −R†

Lσ
µRL

)
. [34]

Its components are

J0 = Nb(R†
RRR +R†

LRL) = Nb|n|, [35]

Jj = b
(
êj

3(|n1̇| − |n2̇| − |n3̇|+ |n4̇|)

+ 2êj
1(√n1̇n2̇ −

√
n3̇n4̇) + êj

iN
i|n|. [36]

We note that the zero component, where |n| =
∑4̇

ν̇=1̇ |nν̇ |
is the density number of fermions in the system, gives the
number of both right- and left-handed particles. We can write
the following expressions |ψR|2 = ψ†

RψR = R†
RRR = |nR| and

|ψL|2 = ψ†
LψL = R†

LRL = |nL| for the right- and left-handed
spinors, as in the Dirac case. Thus, |nR|, |nL| are the right-
and left- handed particle number and |n| = |nR|+ |nL| is the
total density number.
We apply the operator iγµDµ = iγµ∇µ − qγµAµ to the Dirac
equation (4) written under the form iγµ∇µψ = qγµAµψ+mψ.
This yields

□Eψ +m2ψ + i

2qγ
µγνFµνψ + γµ(∇µγ

ν)(Dνψ) = 0, [37]

where we have defined the D’Alambertian operator in the pres-
ence of an electromagnetic field by □E = (∇µ + iqAµ)(∇µ +
iqAµ). Using the Weyl representation, which has been dis-
cussed in this section, it becomes

i
m√
nν̇

[
− ω
m
∇0nν̇ +∇µ(nν̇v

µ) + ω

m
□t

]
+

√
nν̇

[
m2vµv

µ + 2mωv0 + ω2

N2 +m2 −
□
√
nν̇√
nν̇

]
+

(2NNkF0k + iϵlj
kF̂lj σ̃

k)RR +
−(∇̂aê

α
b )S̄aSb((mvα − ωδ0

α)RR +DαRR) = 0.
[38]
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4. Energy Balance

From equation (38), we can identify the different energy con-
tributions to the Fermi gas, and obtain an energy balance
equation for fermions analogous to the one obtained for bosons
in [1, 2]. In order to simplify the notations, we can re-write
equation (38) in terms of the ν̇ coefficients with the understand-
ing that the subindex R refers to each component R = 1̇, 2̇
individually. We get

i

[
−ω∇0 ln(nν̇) + m∇µ(nν̇v

µ)
nν̇

+ ω

nν̇
□t

]
+

2m2
(
K + 1

m
ωv0 + 1

2U
N + UQ

)
+ E + US = 0. [39]

This equation is valid for right handed fermions. The result is
the same for left handed fermions changing RR −→ RL in the
first line, and S←→ S̄ in the second line.
The first line in eq. (39) describes the free density evolution
of the fermions, while the contribution of the different energy
terms appears in the second line. The first one is the kinetic
energy Kν̇ defined as

K = 1
2vµv

µ. [40]

The lapse potential UN is given by

UN = ω2

m2
1
N2 + 1. [41]

It represents the energy contribution due to the chosen lapse
function N . The quantum potential UQ is defined as

UQ = − 1
2m2

□
√
nν̇√
nν̇

. [42]

The contribution of the electromagnetic interaction E is given
by

E = (2NNkF0k + iϵlj
kF̂lj σ̃

k), [43]
= 2N(F01N

1 + F02N
2 + F03N

3)

− e1ν̇F13

√
nν̈

nν̇
+ i

(
e1ν̇F12 + F23

√
nν̈

nν̇

)
.

It depends on the Faraday tensor, shift vector and lapse func-
tion that are related to the Pauli matrices. This relationship
is due to the interaction between the electromagnetic field and
the fermionic spin. Finally, the potential US

ν̇ describes the
interaction between the spin and the geometry of space-time.
It is given by

US = −
(

(mv̂Rd − ων̇ δ̂
0
d) +

D̂α
√
nν̇√

nν̇

)
Γd

baS̄aSb, [44]

for ν̇ = 1̇, 2̇, and by making the substitution S ←→ S̄ for
ν̇ = 3̇, 4̇. In the foregoing equations, the notation |ν̇ means
that we have to evaluate the quantity at the corresponding
ν̇. Note that US

ν̇ disappears if we assume a flat space-time
or if we consider particles without spin. Furthermore, US

ν̇ is
constructed with the generalized gamma matrices (25), which
are related to the spin (the Pauli matrices) and to the space-
time geometry (tetrads).

5. Conclusions

A non-standard representation for fermions was worked us-
ing an analogy as in the boson and quantum mechanics case,
where it was proposed the Madelung transformation. We ex-
tended this transformation for the spinor case, either Dirac
or Weyl fermions. Thus, it was possible to get a success-
ful hydrodynamic representation for fermions in an arbitrary
framework coupled to an electromagnetic field. Although, the
full equations that describe the Fermi gas behaviour are more
complicated than in standard description. This is closer to
the De Broglie-Bohm interpretation in quantum theory, where
the measure problem can be solved by a statistic way. Fur-
thermore, a non-obvious result using this new description was
the first law of the thermodynamics or the energy balance
equation, where different energy contributions of these kind
of particles were found.
The main difference between the hydrodynamic representa-
tion of bosons [1, 2] and fermions, concerns the form of the
Bernoulli equation. For bosons, after doing the Madelung
transformation, we can separate the KG equation into real
and imaginary parts. By contrast, for fermion particles we
have to work with the complete equations of motion because
the real and imaginary parts cannot be easily separated. This
is related to the fact that the gamma matrices are a repre-
sentation of the SO(1, 3) group and the generalized Madelung
transformation used, because it only admits complex parame-
ter to fulfill the Lorentz invariance.
The spin is a fundamental outcome of the Dirac equation
[22], which combines both elements of special relativity and
quantum mechanics, that was introduced to solve the problem
of negative probability present in the KG equation – first
proposed as a relativistic generalization of the Schrödinger
equation. Here, we observe that the general relativistic Dirac
equation involves an additional contribution due to geometry
and spin through the generalized gamma and Pauli matrices.
These terms arise from endowing a quantum field with a curva-
ture (geometry) given by a metric in General Relativity. Such
a contribution is absent in a flat space-time and in a system
without spin as for a scalar field.
With this work we open the possibility of studying in detail the
behavior of fermions in different situations (such as massive
stars or dark matter halos harboring a central black hole),
where general relativity effects may be important. We solved
the problem of energy balance for both bosons and fermions.
In this manner, we can compare the result of the hydrody-
namic representation for classical and quantum fluids in the
various geometries mentioned above.
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