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Introduction
The precise definition of quantum chaos is still an open
question. Unlike classical chaos, one can only describe
different aspects of quantum chaos [1, 2]. The precise
definition of quantum chaos will help the understanding
of thermalization, transport in quantum many-body sys-
tems and black hole information loss. Therefore, how to
accurately define quantum chaos is indeed an important
issue [1, 2].
The reason for the appearance of classical chaos is that
the evolution of the system is very sensitive to the initial
conditions due to the highly non-linearity of the equation
of motion. And the distance between two adjacent points
in the phase space increases as eλLt, where λL is the Lya-
punov exponent [3]. However, since Schrödinger equation
is a linear equation, the evolution of a quantum system is
not highly sensitive to the initial state in principle. This
forces us to develop new chaotic probes for quantum sys-
tems.
Recent works have shown that circuit complexity can in-
deed detect quantum chaos [4, 5, 6]. In particular, it
was found that chaotic behavior can be characterized by
the complexity of bidirectional evolution. That is, first
evolve a reference state forward with a Hamiltonian Ĥ
and then evolve backward with a slightly different Hamil-
tonian Ĥ+ δ̂H. Finally, examine the complexity between
the resulting state and the chosen reference state.
However, because the expression of complexity is usually
very complicated, only the numerical fitting of Lyapunov
exponent and scrambling time was obtained in Ref. [4].
In this work, by considering infinitesimal perturbation, we
find the analytical expression of the circuit complexity and
derive the Lyapunov exponent and scrambling time. As
the most natural concept to measure the distance between
states, the Loschmidt echo was proposed in Ref. [7] to de-
scribe quantum chaos. Similar to complexity, Loschmidt
echo is defined as the inner product under bidirectional
evolution. We also find that the Lyapunov exponent can
indeed be obtained through the Loschmidt echo, which is
consistent with Ref. [7].

Main results
We start with the Hamiltonian of the inverted harmonic
oscillator, namely

Ĥ =
p̂2

2m
+ V̂, V̂ = −

1

2
mω2q̂2, (1)

wherem andω are the mass and frequency of the inverted
harmonic oscillator, respectively. Due to the simplicity of
Gaussian states ψ, one can show that they are completely
characterized by the so-called covariance matrix, the two-
point functions defined by,

Gab = ψ(ξ̂aξ̂b + ξ̂bξ̂a)ψ, (2)
where the vector operator ξ̂a =

q̂g, p̂
g

. Note that g is a
new gate scale, and its dimension is one. Considering the
unitary transformation between Gaussian states, namely

ψ′ = Û |ψ⟩ , Û = e−
i
2
kabξ̂

aξ̂b, (3)
one can rewrite it as a unique transformation of their cor-
responding covariance matrices as follows [8]

G′ab = ψ′(ξ̂aξ̂b + ξ̂bξ̂a)ψ′ =Ma
cG

cdMb
d, (4)

where

M = eK, Kab = Ω
ackcb, Ωab =


0 1

−1 0

 . (5)

As a consequence, we should expect that the circuit com-
plexity of Gaussian states can be rewritten as a function
of the covariance matrix. Particularly, it was found in [9]
that the information about the circuit complexity is en-
coded in the relative covariance matrix that is defined by

∆ = GTG
−1
R . (6)

where GR and GT denote the covariance matrix of the ref-
erence state and the target state, respectively. In the fol-
lowing, we denote the eigenvalue of greater than or equal
to 1 as ρ. For Gaussian states, it was explicitly shown in
Ref. [9] that the circuit complexity related to the F2 cost
function is given by

C (GR, GT) =
1

2
√
2

√√√√Tr [(log∆)2] = 1

2
log ρ. (7)

For the Gaussian states, the inner product also depends
on the relative covariance matrix,

I = |⟨GR | GT⟩|2 = det
√
2∆1/4√
1 + ∆

=
2
√
ρ

1+ ρ
. (8)

We choose the reference state as
ψR (q) =


amω

π


1/4

exp
−
1

2
amωq2

 , (9)

where a is a dimensionless parameter that characterizes
the Gaussian states. We consider a particular target state
ψT by a backward and forward time evolution from the
reference state,

|ψT⟩ = eiĤ
′te−iĤt |ψR⟩ . (10)

The perturbed Hamiltonian is defined by

Ĥ ′ =
p̂2

2m
−
1

2
m(ω+δω)2q̂2 with δω

ω
≪ 1. (11)

In order to obtain a simple analytical expression of the
chaotic behaviors, we focus on the infinitesimal perturba-
tion by taking δω

ω
→ 0 to simplify the precise expression of

ρ. Finally, we find that the leading terms of ρ are derived
as

ρ ≈ ρ0 = 1+
δω2

ω2



1+ a2
2 cosh(4ωt)
16a2

− cosh(2ωt)


+
δω

ω



1+ a2
2 cosh(4ωt)
8a2

− 2 cosh(2ωt)

−

1+ a2
2 δω2 cosh(6ωt)
16a2ω2

+

1+ a2
4 δω2 cosh(8ωt)
512a4ω2



1/2

(12)
where we still keep higher-order terms δω2, δω4 due to
the competing factors cosh(#ωt) with exponentially in-
creases in time. Note that there are four modes of expo-
nential change over time, namely ω, 2ω, 3ω, 4ω.
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Figure 1: log ρ0 and log ρ vs time. The parameters are set
as a = 2 and δω/ω = 10−6.

Summary and conclusions

In this work, we obtained the analytical expressions of the
circuit complexity and Loschmidt echo. We found that
the leading contributions of the circuit complexity C and
Loschmidt echo I exhibit similar characteristics at late
times,

C(t) ≈ 2ω

t−
1

2ω
log 4aω

(1+ a2)δω

 ,

− log I(t) ≈ 2ω

t−
1

2ω
log 8aω

(1+ a2)δω

 .
(13)

Through the above analytical results, we can read the Lya-
punov exponents λC

L and λI
L and the scrambling times tCs

and tIs . The Lyapunov exponent λC
L is consistent with the

result in [4] that was derived by using numerical fitting.
Furthermore, we found that the scrambling time will di-
verge as the perturbation approaches zero because it takes
infinite time for the system to respond to infinitesimal per-
turbations. We also found that the scrambling time ex-
plicitly depends on the choice of the reference states.
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