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Conformal method of Friedrich

Penrose compactification in terms of an unphysical conformally rescaled
metric
G = g, Q€ C™(M)

e Einstein’s equations G, [g] = Ag,., written in terms of g, are
singular at conformal boundary surface 2 = 0.

@ Not directly applicable to study asymptotics.
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Conformal method of Friedrich

Friedrich's approach

Find system of equations which

@ are more general i.e. every solution to Einstein’s equations is also a
solution to these equations,

@ are conformally invariant,
@ the system is hyperbolic (after imposing suitable gauge),
()

the scale factor €2 and properties of being conformal to Einsteinian
metric propagate by hyperbolic equations too.

@ Stability of asymptotically simple spaces (possesing Penrose
compactification) follows from well-posedness of hyperbolic
equations.

@ Smoothness of Penrose compactification (A > 0).
Friedrich's solution invented for 3 + 1.
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Anderson’s proposition (dimension d > 4 even)

Vanishing of Fefferman-Graham obstruction tensor H,,, follows from
Einstein's equations

G/_“/ = Agl“’ — H/J‘V = 0

Use equation H,,,, = 0 (AFG equations).

@ Nice conformal transformations of H,,, (by powers of 2)

o Lagrangean formulation, V¥*H,,,, = 0 and H}; =0

Complicated high order tensor
Hy =c0¥*72B,, +..., c€R

with the Bach tensor B, = UP,, — VXV, P, + ..., where P, is the
Schouten tensor .
Is this eqaution well-posed after gauge fixing?

In d = 4 well-posedness proved by Guenther '70. Proofs in higher dimensions
nontrivial (first approach Anderson, Anderson-Chrusciel). J
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Anderson proposition (AFG equations)

In order to obtain well-defined evolution we need to impose the gauge
conditions (similarly as for the Einstein’s equations)

© Gauge freedom: diffeomorphisms and conformal transformations
F,=0z,=0, R=0 (gauge fixing, always possible)

@ Constraints H,,n"|sx = 0 for initial data D%~ 1g,,, |

The gauge fixed equation is now
B2 gap + F(D¥1g) =0, B =g",d,

Weakly hyperbolic (we can compute all time derivatives, convergent
series for analytic initial data).
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Weakly hyperbolic systems

Equations:

02 gas + F(DY ') =0, ©=g"0,0,

© Multiple characteristics of the principal symbol (p#p“)d/2 of
linearization. In general such equations are not well-posed.

© Problems already for linear equations with constant coefficients
(multiple roots in characteristic polynomial can aquire large
imaginary part via lower order perturbation) that leads to arbitrary
fastly growing modes.

© Some additional properties of lower order terms are necessary
(Levi-like conditions). These are difficult to check for the gauge
fixed FG obstruction tensor.

Contrast with Einstein's equations in harmonic gauge (quasi-linear wave
equation, stable hyperbolic, well-posed).

W. Kaminski GR23 5/12



Ambient metric equations

The AFG is not a random equation, but it is related to Einstein’s
equations in the ambient metric:

Ambient metric construction of Fefferman-Graham

Associate d + 2 dimensional metric with a conformal structure [g,,,]
g = 2pdt? + 2tdtdp + t3§,,, (2", p)dztdx”, T = t0; conf. Killing

where g, = >, ¢ g,[fy]p” is a p-dependent metric on M (g,ﬁ?i = Guv)-

The wave equation in the ambient metric induces well-behaved
hyperbolic high order equation. Example:

(Critical) Graham-Jenne-Mason-Sparling (GJMS) equation

0=Pip=00%2¢p+.. .. < 0O¢ =0(p?¥?), Lrdp=0

where ¢ = | ,—0,t=1.
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Well-posedness

Equivalent formula for ¢|,—1 = ¢ = Ei/jo_l Prlpn 4
; d y
Bsdl =2 (1= 5] (g =0

Decoupled system of equations for ¢l (n < g — 1), scalar fields on M.

Recursive systems

We can recursively determined higher expansion fields and the system is
equivalent to high order equation for ¢!

”
Generalized quasilinear wave equation is well-posed

The system

[Dg(ﬁ)ﬁ][n] +Fn(D1ﬁginvﬂ[n+l]) -0, 0<n<N.

for @ + O(pN*1). Here (@) means that Gl depends on ﬁ@n

Function space: shifted Sobolev spaces.
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Example for GJMS in d = 4

System of equations for two scalar fields on M

Expansion Oy = O + p0OM, where O = f#49,,0, + f+0,

040 4 241 = @

060 1+ 941 — g _
{ Dg[l] i DQ[SH&[O] 0_ 0 e D¢[1] + fwiaul)u + fH 8/1@[()] =0
B Opp + 20,60 +...=0
after introducing dependent variables p,, = 9, ¢!,

Generalized to higher orders by induction.
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Excessive gauge fixing.

Obstruction tensor

H,, =0<= Ry, =0 (p??) (1)

Recursively compute g,[};] and plug to the last equation for g,,,, = g,[?l.

Should be treated as a second order evolution system

Problems with the method of Choquet-Bruhat

© The propagation of the gauge in Choquet-Bruhat method uses
Bianchi identity. Here Bianchi identity are used to recover

Rjoo = O(Pd/271) and Roooo = O(Pd/272)

from R, = O, (p?/?) (0o is p direction).

@ We construct gauge fixing functions 4 and éu from R, and
Rooso-
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Choquet-Bruhat method for AFG

@ Introduce gauge fixing functions (notation Sry = Rijli=1).
3= 2 £ O e G = Fy+ 202 S — 0,025,
@ The gauge fixed equation E,,, = O(p¥/?) for G, + O(p™?).
B =S — %(ﬁuév + ﬁvéu) — G-

is decoupled, recursive and generalized hyperbolic.

© Bianchi identity gives decoupled, recursive and generalized hyperbolic
equations for the gauge functions 7 + O(p%/?~1) and G, + O(p¥/?).

@ Vanishing of the initial condition for this system follows from
vanishing of 4% oc R and é,[?] = F,, = Oz, up to a sufficient order
on the Cauchy surface and constraints there.

@ ... plus standard gluing argument.

AFG equation is well-posed.
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Propagation of (almost) Einstein structure

Conformally almost Einstein (Nurowski-Gover, Gover, Graham-Willse)

Existence of the covariantly constant covector
VL =0(p**)

We have Q = Ip|;—1 ,—0 and I;If oc A + O(p¥/?71).

@ Analogous to propagation of Killing equation for vacuum solutions,
but here additionally I; = 970 (for Lo = o)

o If Oo = O(p¥?t1) and Rr; = O(p™) (flat extension possible) then
(O+...)VI; = O(p¥*') both eqgs. well-posed.

@ The vanishing of initial data for VIIJ‘£E1 reduces to the standard
condition
D(V,V,Q — P,Q) s =0
thanks to recursive structure of the propagation equation.
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@ The AFG equation (vanishing of the Fefferman-Graham obstruction
tensor) is a well-posed system (in Oz, = 0 and R = 0 gauge).

@ The almost Einstein condition propagates by hyperbolic equation
too, thus we have stability of future or past asymptotically simple
solutions (Anderson, Anderson-Chrusciel).

© Application to other equations constructed by ambient metric like
conformal powers of d’'Alembertians (GJMS), Q-curvature etc.
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