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Conformal method of Friedrich

Penrose compactification in terms of an unphysical conformally rescaled
metric

ĝµν = Ω2gµν , Ω ∈ C∞(M)

Einstein’s equations Gµν [g] = Λgµν , written in terms of ĝµν are
singular at conformal boundary surface Ω = 0.

Not directly applicable to study asymptotics.
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Conformal method of Friedrich

Friedrich’s approach

Find system of equations which

1 are more general i.e. every solution to Einstein’s equations is also a
solution to these equations,

2 are conformally invariant,

3 the system is hyperbolic (after imposing suitable gauge),

4 the scale factor Ω and properties of being conformal to Einsteinian
metric propagate by hyperbolic equations too.

Stability of asymptotically simple spaces (possesing Penrose
compactification) follows from well-posedness of hyperbolic
equations.

Smoothness of Penrose compactification (Λ > 0).

Friedrich’s solution invented for 3 + 1.
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Anderson’s proposition (dimension d ≥ 4 even)

Vanishing of Fefferman-Graham obstruction tensor Hµν follows from
Einstein’s equations

Gµν = Λgµν =⇒ Hµν = 0

Use equation Hµν = 0 (AFG equations).

Nice conformal transformations of Hµν (by powers of Ω)

Lagrangean formulation, ∇µHµν = 0 and Hµ
µ = 0

Complicated high order tensor

Hµν = c�d/2−2Bµν + . . . , c ∈ R

with the Bach tensor Bµν = �Pµν −∇χ∇µPχν + . . ., where Pµν is the
Schouten tensor .
Is this eqaution well-posed after gauge fixing?

In d = 4 well-posedness proved by Guenther ’70. Proofs in higher dimensions

nontrivial (first approach Anderson, Anderson-Chruściel).

W. Kamiński GR23 3 / 12



Anderson proposition (AFG equations)

In order to obtain well-defined evolution we need to impose the gauge
conditions (similarly as for the Einstein’s equations)

1 Gauge freedom: diffeomorphisms and conformal transformations

Fµ = �xµ = 0, R = 0 (gauge fixing, always possible)

2 Constraints Hµνn
µ|Σ = 0 for initial data Dd−1gµν |Σ

The gauge fixed equation is now

�
d
2 gαβ + F (Dd−1g) = 0, � = gµν∂µ∂ν

Weakly hyperbolic (we can compute all time derivatives, convergent
series for analytic initial data).
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Weakly hyperbolic systems

Equations:

�
d
2 gαβ + F (Dd−1g) = 0, � = gµν∂µ∂ν

1 Multiple characteristics of the principal symbol (pµp
µ)d/2 of

linearization. In general such equations are not well-posed.

2 Problems already for linear equations with constant coefficients
(multiple roots in characteristic polynomial can aquire large
imaginary part via lower order perturbation) that leads to arbitrary
fastly growing modes.

3 Some additional properties of lower order terms are necessary
(Levi-like conditions). These are difficult to check for the gauge
fixed FG obstruction tensor.

Contrast with Einstein’s equations in harmonic gauge (quasi-linear wave
equation, stable hyperbolic, well-posed).
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Ambient metric equations

The AFG is not a random equation, but it is related to Einstein’s
equations in the ambient metric:

Ambient metric construction of Fefferman-Graham

Associate d+ 2 dimensional metric with a conformal structure [gµν ]

g = 2ρdt2 + 2tdtdρ+ t2g̃µν(xµ, ρ)dxµdxν , T = t∂t conf. Killing

where g̃µν =
∑
n=0 g̃

[n]
µνρn is a ρ-dependent metric on M (g̃

[0]
µν = gµν).

The wave equation in the ambient metric induces well-behaved
hyperbolic high order equation. Example:

(Critical) Graham-Jenne-Mason-Sparling (GJMS) equation

0 = Pdφ = �d/2φ+ . . . .⇐⇒ ���φ = O(ρd/2), LTφ = 0

where φ = φ|ρ=0,t=1.
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Well-posedness

Equivalent formula for φ|t=1 = φ̃ =
∑d/2−1
n=0 φ̃[n]ρn + . . .

[�g̃φ̃][n] − 2

(
n+ 1− d

2

)
(n+ 1)φ̃[n+1] = 0.

Decoupled system of equations for φ̃[n] (n ≤ d
2 − 1), scalar fields on M .

Recursive systems

We can recursively determined higher expansion fields and the system is
equivalent to high order equation for φ̃[0].

Generalized quasilinear wave equation is well-posed

The system

[�g̃(ũ)ũ][n] + Fn(D1ũ
[k]
k≤n, ũ

[n+1]) = 0, 0 ≤ n ≤ N.

for ũ+O(ρN+1). Here g̃(ũ) means that g̃[n] depends on ũ
[k]
k≤n.

Function space: shifted Sobolev spaces.
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Example for GJMS in d = 4

System of equations for two scalar fields on M

φ̃[0], φ̃[1].

Expansion �g̃ = � + ρ�[1], where �[1] = fµν∂µ∂ν + fµ∂µ

{
�φ̃[0] + 2φ̃[1] = 0

�φ̃[1] + �[1]φ̃[0] = 0
=⇒


�φ̃[0] + 2φ̃[1] = 0

�φ̃[1] + fµν∂µpν + fµ∂µφ̃
[0] = 0

�pµ + 2∂µφ̃
[1] + . . . = 0

after introducing dependent variables pµ = ∂µφ̃
[0].

Generalized to higher orders by induction.
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Excessive gauge fixing.

Obstruction tensor

Hµν = 0⇐⇒ Rµν = O+(ρd/2) (1)

Recursively compute g̃
[n]
µν and plug to the last equation for gµν = g̃

[0]
µν .

Should be treated as a second order evolution system

Problems with the method of Choquet-Bruhat

1 The propagation of the gauge in Choquet-Bruhat method uses
Bianchi identity. Here Bianchi identity are used to recover

Rµ∞ = O(ρd/2−1) and R∞∞ = O(ρd/2−2)

from Rµν = O+(ρd/2) (∞ is ρ direction).

2 We construct gauge fixing functions γ̃ and G̃µ from Rµ∞ and
R∞∞.
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Choquet-Bruhat method for AFG

1 Introduce gauge fixing functions (notation S̃IJ = RIJ |t=1).

γ̃ = −1

2
g̃[0]ξχg̃

[1]
ξχ + ∂−1

∞ S̃∞∞, G̃µ = Fµ + 2∂−1
∞ S̃µ∞ − ∂µ∂−1

∞ γ̃,

2 The gauge fixed equation Ẽµν = O(ρd/2) for g̃µν +O(ρd/2).

Ẽµν = S̃µν −
1

2
(∇̃µG̃ν + ∇̃νG̃µ)− g̃µν γ̃.

is decoupled, recursive and generalized hyperbolic.

3 Bianchi identity gives decoupled, recursive and generalized hyperbolic
equations for the gauge functions γ̃ +O(ρd/2−1) and G̃µ +O(ρd/2).

4 Vanishing of the initial condition for this system follows from

vanishing of γ̃[0] ∝ R and G̃
[0]
µ = Fµ = �xµ up to a sufficient order

on the Cauchy surface and constraints there.

5 . . . plus standard gluing argument.

AFG equation is well-posed.
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Propagation of (almost) Einstein structure

Conformally almost Einstein (Nurowski-Gover, Gover, Graham-Willse)

Existence of the covariantly constant covector

∇IIJ = O(ρd/2−1)

We have Ω = I0|t=1,ρ=0 and III
I ∝ Λ +O(ρd/2−1).

Analogous to propagation of Killing equation for vacuum solutions,
but here additionally II = ∂Iσ (for LTσ = σ)

If ���σ = O(ρd/2+1) and RIJ = O(ρ∞) (flat extension possible) then

(��� + . . .)∇IIJ = O(ρd/2−1) both eqs. well-posed.

The vanishing of initial data for ∇IIJ |[n]
t=1 reduces to the standard

condition
Dd−1 tf(∇µ∇νΩ− PµνΩ)|Σ = 0

thanks to recursive structure of the propagation equation.
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Summary

1 The AFG equation (vanishing of the Fefferman-Graham obstruction
tensor) is a well-posed system (in �xµ = 0 and R = 0 gauge).

2 The almost Einstein condition propagates by hyperbolic equation
too, thus we have stability of future or past asymptotically simple
solutions (Anderson, Anderson-Chruściel).

3 Application to other equations constructed by ambient metric like
conformal powers of d’Alembertians (GJMS), Q-curvature etc.

W. Kamiński GR23 12 / 12


