Fefferman-Graham obstruction tensor and Einstein's equations

Wojciech Kamiński

Uniwersytet Warszawski

[arxiv: 2108.08085]

GR' 23, July 8, 2022

Conformal method of Friedrich

Penrose compactification in terms of an unphysical conformally rescaled metric

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad \Omega \in C^{\infty}(M)$$

- Einstein's equations $G_{\mu\nu}[g] = \Lambda g_{\mu\nu}$, written in terms of $\hat{g}_{\mu\nu}$ are singular at conformal boundary surface $\Omega = 0$.
- Not directly applicable to study asymptotics.

W. Kamiński GR23 2 / 12

Conformal method of Friedrich

Friedrich's approach

Find system of equations which

- are more general i.e. every solution to Einstein's equations is also a solution to these equations,
- 2 are conformally invariant,
- 1 the system is hyperbolic (after imposing suitable gauge),
- ullet the scale factor Ω and properties of being conformal to Einsteinian metric propagate by hyperbolic equations too.
 - Stability of asymptotically simple spaces (possesing Penrose compactification) follows from well-posedness of hyperbolic equations.
- Smoothness of Penrose compactification ($\Lambda > 0$).

Friedrich's solution invented for 3 + 1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆○○○

Anderson's proposition (dimension $d \ge 4$ even)

Vanishing of Fefferman-Graham obstruction tensor $H_{\mu\nu}$ follows from Einstein's equations

$$G_{\mu\nu} = \Lambda g_{\mu\nu} \implies H_{\mu\nu} = 0$$

Use equation $H_{\mu\nu}=0$ (AFG equations).

- Nice conformal transformations of $H_{\mu\nu}$ (by powers of Ω)
- Lagrangean formulation, $abla^{\mu}H_{\mu\nu}=0$ and $H^{\mu}_{\mu}=0$

Complicated high order tensor

$$H_{\mu\nu} = c\Box^{d/2-2}B_{\mu\nu} + \dots, \quad c \in \mathbb{R}$$

with the Bach tensor $B_{\mu\nu}=\Box P_{\mu\nu}-\nabla^\chi\nabla_\mu P_{\chi\nu}+\ldots$, where $P_{\mu\nu}$ is the Schouten tensor .

Is this eqaution well-posed after gauge fixing?

In d=4 well-posedness proved by Guenther '70. Proofs in higher dimensions nontrivial (first approach Anderson, Anderson-Chruściel).

Anderson proposition (AFG equations)

In order to obtain well-defined evolution we need to impose the gauge conditions (similarly as for the Einstein's equations)

Gauge freedom: diffeomorphisms and conformal transformations

$$F_{\mu} = \Box x_{\mu} = 0, \quad R = 0$$
 (gauge fixing, always possible)

② Constraints $H_{\mu\nu}n^{\mu}|_{\Sigma}=0$ for initial data $D^{d-1}g_{\mu\nu}|_{\Sigma}$

The gauge fixed equation is now

Weakly hyperbolic (we can compute all time derivatives, convergent series for analytic initial data).

W. Kamiński GR23 4/12

Weakly hyperbolic systems

Equations:

$$\Box^{\frac{d}{2}} g_{\alpha\beta} + F(D^{d-1}g) = 0, \quad \Box = g^{\mu\nu} \partial_{\mu} \partial_{\nu}$$

- Multiple characteristics of the principal symbol $(p_{\mu}p^{\mu})^{d/2}$ of linearization. In general such equations are not well-posed.
- Problems already for linear equations with constant coefficients (multiple roots in characteristic polynomial can aquire large imaginary part via lower order perturbation) that leads to arbitrary fastly growing modes.
- Some additional properties of lower order terms are necessary (Levi-like conditions). These are difficult to check for the gauge fixed FG obstruction tensor.

Contrast with Einstein's equations in harmonic gauge (quasi-linear wave equation, stable hyperbolic, well-posed).

◆ロ → ◆母 → ◆ き → を ● ・ り へ ○ GR23

Ambient metric equations

The AFG is not a random equation, but it is related to Einstein's equations in the ambient metric:

Ambient metric construction of Fefferman-Graham

Associate d+2 dimensional metric with a conformal structure $[g_{\mu\nu}]$

$$\mathbf{g}=2\rho dt^2+2tdtd\rho+t^2\tilde{g}_{\mu\nu}(x^\mu,\rho)dx^\mu dx^\nu,\quad \mathbf{T}=t\partial_t \text{ conf. Killing}$$

where
$$\tilde{g}_{\mu\nu}=\sum_{n=0}\tilde{g}^{[n]}_{\mu\nu}\rho^n$$
 is a ρ -dependent metric on M $(\tilde{g}^{[0]}_{\mu\nu}=g_{\mu\nu})$.

The wave equation in the ambient metric induces well-behaved hyperbolic high order equation. Example:

(Critical) Graham-Jenne-Mason-Sparling (GJMS) equation

$$0 = P_d \phi = \Box^{d/2} \phi + \dots \iff \Box \phi = O(\rho^{d/2}), \quad \mathcal{L}_{\mathbf{T}} \phi = 0$$

where $\phi = \phi|_{\rho=0,t=1}$.

W. Kamiński GR23 6 / 12

Well-posedness

Equivalent formula for $\phi|_{t=1} = \tilde{\phi} = \sum_{n=0}^{d/2-1} \tilde{\phi}^{[n]} \rho^n + \dots$

$$\left[\Box_{\tilde{g}}\tilde{\phi}\right]^{[n]} - 2\left(n + 1 - \frac{d}{2}\right)(n+1)\tilde{\phi}^{[n+1]} = 0.$$

Decoupled system of equations for $\tilde{\phi}^{[n]}$ $(n \leq \frac{d}{2} - 1)$, scalar fields on M.

Recursive systems

We can recursively determined higher expansion fields and the system is equivalent to high order equation for $\tilde{\phi}^{[0]}$.

Generalized quasilinear wave equation is well-posed

The system

$$[\Box_{\tilde{a}(\tilde{u})}\tilde{u}]^{[n]} + F^n(D^1\tilde{u}_{k\leq n}^{[k]}, \tilde{u}^{[n+1]}) = 0, \quad 0 \leq n \leq N.$$

for $\tilde{u}+O(\rho^{N+1}).$ Here $\tilde{g}(\tilde{u})$ means that $\tilde{g}^{[n]}$ depends on $\tilde{u}_{k< n}^{[k]}.$

Function space: shifted Sobolev spaces.

W. Kamiński

GR23

7/12

Example for GJMS in d=4

W. Kamiński

System of equations for two scalar fields on M

$$\tilde{\phi}^{[0]}, \quad \tilde{\phi}^{[1]}.$$

Expansion $\Box_{\tilde{q}} = \Box + \rho \Box^{[1]}$, where $\Box^{[1]} = f^{\mu\nu} \partial_{\mu} \partial_{\nu} + f^{\mu} \partial_{\mu} \partial_{\nu}$

$$\begin{cases}
\Box \tilde{\phi}^{[0]} + 2\tilde{\phi}^{[1]} = 0 \\
\Box \tilde{\phi}^{[1]} + \Box^{[1]} \tilde{\phi}^{[0]} = 0
\end{cases} \implies \begin{cases}
\Box \tilde{\phi}^{[0]} + 2\tilde{\phi}^{[1]} = 0 \\
\Box \tilde{\phi}^{[1]} + f^{\mu\nu}\partial_{\mu}p_{\nu} + f^{\mu}\partial_{\mu}\tilde{\phi}^{[0]} = 0 \\
\Box p_{\mu} + 2\partial_{\mu}\tilde{\phi}^{[1]} + \dots = 0
\end{cases}$$

after introducing dependent variables $p_{\mu} = \partial_{\mu} \tilde{\phi}^{[0]}$. Generalized to higher orders by induction.

GR23

Excessive gauge fixing.

Obstruction tensor

$$H_{\mu\nu} = 0 \Longleftrightarrow \mathbf{R}_{\mu\nu} = O_{+}(\rho^{d/2}) \tag{1}$$

Recursively compute $\tilde{g}_{\mu\nu}^{[n]}$ and plug to the last equation for $g_{\mu\nu}=\tilde{g}_{\mu\nu}^{[0]}$. Should be treated as a second order evolution system

Problems with the method of Choquet-Bruhat

• The propagation of the gauge in Choquet-Bruhat method uses Bianchi identity. Here Bianchi identity are used to recover

$$\mathbf{R}_{\mu\infty} = O(\rho^{d/2-1})$$
 and $\mathbf{R}_{\infty\infty} = O(\rho^{d/2-2})$

from $\mathbf{R}_{\mu\nu} = O_+(\rho^{d/2})$ (∞ is ρ direction).

② We construct gauge fixing functions $\tilde{\gamma}$ and \tilde{G}_{μ} from $\mathbf{R}_{\mu\infty}$ and $\mathbf{R}_{\infty\infty}$.

W. Kamiński GR23 9/12

Choquet-Bruhat method for AFG

• Introduce gauge fixing functions (notation $\tilde{S}_{IJ} = \mathbf{R}_{IJ}|_{t=1}$).

$$\tilde{\gamma} = -\frac{1}{2}\tilde{g}^{[0]\xi\chi}\tilde{g}^{[1]}_{\xi\chi} + \partial_{\infty}^{-1}\tilde{S}_{\infty\infty}, \quad \tilde{G}_{\mu} = F_{\mu} + 2\partial_{\infty}^{-1}\tilde{S}_{\mu\infty} - \partial_{\mu}\partial_{\infty}^{-1}\tilde{\gamma},$$

② The gauge fixed equation $\tilde{E}_{\mu\nu} = O(\rho^{d/2})$ for $\tilde{g}_{\mu\nu} + O(\rho^{d/2})$.

$$\tilde{E}_{\mu\nu} = \tilde{S}_{\mu\nu} - \frac{1}{2} (\tilde{\nabla}_{\mu} \tilde{G}_{\nu} + \tilde{\nabla}_{\nu} \tilde{G}_{\mu}) - \tilde{g}_{\mu\nu} \tilde{\gamma}.$$

is decoupled, recursive and generalized hyperbolic.

- **3** Bianchi identity gives decoupled, recursive and generalized hyperbolic equations for the gauge functions $\tilde{\gamma} + O(\rho^{d/2-1})$ and $\tilde{G}_{\mu} + O(\rho^{d/2})$.
- Vanishing of the initial condition for this system follows from vanishing of $\tilde{\gamma}^{[0]} \propto R$ and $\tilde{G}^{[0]}_{\mu} = F_{\mu} = \Box x_{\mu}$ up to a sufficient order on the Cauchy surface and constraints there.
- 1 ... plus standard gluing argument.

AFG equation is well-posed.

W. Kamiński GR23 10/12

Propagation of (almost) Einstein structure

Conformally almost Einstein (Nurowski-Gover, Gover, Graham-Willse)

Existence of the covariantly constant covector

$$\nabla_I \mathbf{I}_J = O(\rho^{d/2-1})$$

We have $\Omega = \mathbf{I}_0|_{t=1,\rho=0}$ and $\mathbf{I}_I \mathbf{I}^I \propto \Lambda + O(\rho^{d/2-1})$.

- Analogous to propagation of Killing equation for vacuum solutions, but here additionally $\mathbf{I}_I = \partial_I \boldsymbol{\sigma}$ (for $\mathcal{L}_T \boldsymbol{\sigma} = \boldsymbol{\sigma}$)
- If $\Box \sigma = O(
 ho^{d/2+1})$ and $\mathbf{R}_{IJ} = O(
 ho^{\infty})$ (flat extension possible) then

$$(\Box + \ldots) \, {f \nabla}_I {f I}_J = O(
ho^{d/2-1})$$
 both eqs. well-posed.

• The vanishing of initial data for $\mathbf{\nabla}_I \mathbf{I}_J|_{t=1}^{[n]}$ reduces to the standard condition

$$D^{d-1}\operatorname{tf}(\nabla_{\mu}\nabla_{\nu}\Omega - P_{\mu\nu}\Omega)|_{\Sigma} = 0$$

thanks to recursive structure of the propagation equation.

W. Kamiński GR23 11 / 12

Summary

- The AFG equation (vanishing of the Fefferman-Graham obstruction tensor) is a well-posed system (in $\Box x_{\mu} = 0$ and R = 0 gauge).
- The almost Einstein condition propagates by hyperbolic equation too, thus we have stability of future or past asymptotically simple solutions (Anderson, Anderson-Chruściel).
- Application to other equations constructed by ambient metric like conformal powers of d'Alembertians (GJMS), Q-curvature etc.